-
Тип степени: Сертификат "Машинное обучение
-
Дополнительная квалификация: Сертификат "Статистика
-
Итоговый экзамен: Практическая работа над проектом с итоговыми презентациями
-
Время уроков: Полный рабочий деньС понедельника по пятницу с 8:30 до 15:35 (в праздничные дни с 8:30 до 17:10).
-
Язык обучения: Немецкий
-
Продолжительность: 8 Недели
Статистика
Основы статистики (около 6 дней)
Основы теории измерений (совокупность и выборка, типы выборок, уровни измерения и шкалы)
Одномерная описательная статистика (частотные распределения, центральные меры, меры дисперсии, стандартные значения, гистограммы, столбчатые диаграммы, круговые диаграммы, линейные диаграммы и коробчатые графики)
Двумерная описательная статистика (меры корреляции, коэффициенты корреляции, кросстабы, диаграммы рассеяния и сгруппированные гистограммы).
Основы индуктивной выводной статистики (распределение вероятностей, нормальное распределение, распределение средних значений, тест на значимость, проверка нулевой гипотезы Фишера, размер эффекта, оценка параметров, доверительные интервалы, графики ошибок, анализ мощности и определение оптимального размера выборки)
Искусственный интеллект (ИИ) в рабочем процессе
Презентация конкретных технологий ИИ
и возможного применения в профессиональной среде
Методы сравнения двух групп (около 5 дней)
z- и t-тест для выборки (отклонение от заданного значения)
t-тест для средней разницы между двумя независимыми/взаимосвязанными выборками
Проверка эффективности действий, мер, вмешательств и других изменений с помощью t-тестов (претест-посттест с двумя группами).
Вспомогательные тесты значимости (тест Андерсона-Дарлинга, тест Райана-Джойнера, тест Левене, тест Бонне, тест значимости для корреляций)
Непараметрические методы (тест Вилкоксона, тест знаков, тест Манна-Уитни)
Анализ случайностей (биномиальный тест, точный тест Фишера, тест хи-квадрат, кросс-табуляция с мерами ассоциации)
Методы сравнения средних показателей нескольких групп (около 5 дней)
Одно- и двухфакторный дисперсионный анализ (простой и сбалансированный ANOVA)
Многофакторный дисперсионный анализ (общая линейная модель)
Фиксированные, случайные, перекрестные и вложенные факторы
Методы множественных сравнений (Tukey-HSD, Dunnett, Hsu-MCB, Games-Howell)
Анализ взаимодействия (анализ эффектов взаимодействия)
Анализ избирательности и мощности для дисперсионного анализа
Введение в проектирование экспериментов (DoE) (около 1 дня)
Полные и частичные факториальные экспериментальные схемы
Работа над проектом (около 3 дней)
Закрепление изученного материала
Презентация результатов проекта
Машинное обучение
Введение в машинное обучение (около 5 дней)
Зачем нужно машинное обучение?
Примеры применения
Контролируемое обучение, неконтролируемое обучение, частично контролируемое обучение, обучение с подкреплением
Примеры наборов данных
Знакомство с данными
Обучающие, проверочные и тестовые данные
Просмотр данных
Составление прогнозов
Контролируемое обучение (около 5 дней)
Классификация и регрессия
Обобщение, чрезмерная и недостаточная подгонка
Размер набора данных
Алгоритмы для контролируемого обучения
Линейные модели
Классификаторы Байеса
Деревья решений
Случайный лес
Градиентный бустинг
k-nearest neighbours
Векторные машины с поддержкой
Условное случайное поле
Нейронные сети и глубокое обучение
Вероятности
Неконтролируемое обучение (около 5 дней)
Типы неконтролируемого обучения
Предварительная обработка и масштабирование
Преобразование данных
Масштабирование обучающих и тестовых данных
Уменьшение размерности
Разработка признаков
Манифольд-обучение
Декомпозиция главных компонент (PCA)
Факторизация неотрицательных матриц (NMF)
Манифольд-обучение с t-SNE
Кластерный анализ
Кластеризация k-Means
Агломеративная кластеризация
Иерархический кластерный анализ
DBSCAN
Кластерные алгоритмы
Оценка и совершенствование (около 2 дней)
Выбор модели и оценка модели
Настройка гиперпараметров оценщика
Кросс-валидация
Поиск по сетке
Метрики оценки
Классификация
Работа над проектом (около 3 дней)
Закрепление изученного материала
Презентация результатов проекта
Возможны изменения. Содержание курса регулярно обновляется.
Пройдя этот курс, вы будете понимать основы статистики, уметь обрабатывать и оценивать данные, а также представлять, объяснять и интерпретировать результаты статистического анализа и результаты с помощью графиков.
Вы также обладаете необходимыми знаниями в области машинного обучения. Вы знаете наиболее важные причины использования машинного обучения, области применения, а также различные категории и концепции машинного обучения. Вы дополните свои знания навыками оценки и совершенствования.
Компьютерные науки, математика, электротехника и люди со степенью в области (бизнес) инженерии.
Машинное обучение используется во многих областях: самостоятельная разработка подходящих спам-фильтров для интернета, создание точных прогнозов уровня запасов в управлении цепочками поставок или разработка прогнозов покупок для отдельных клиентов или сегментов потребителей в маркетинге. Сотрудники, обладающие квалификацией в области машинного обучения, могут быть задействованы во всех отраслях и поэтому пользуются большим спросом на рынке труда.
Ваш значимый сертификат дает подробное представление о приобретенных вами квалификациях и улучшает ваши карьерные перспективы.
Дидактическая концепция
Ваши преподаватели обладают высокой профессиональной и дидактической квалификацией и будут обучать вас с первого до последнего дня (никакой системы самообучения).
Вы будете учиться в эффективных небольших группах. Обычно курсы состоят из 6-25 человек. Общие занятия дополняются многочисленными практическими упражнениями во всех модулях курса. Практический этап - важная часть курса, поскольку именно в это время вы обрабатываете полученные знания и обретаете уверенность и практичность в их применении. Заключительный раздел курса включает в себя проект, разбор конкретных ситуаций или итоговый экзамен.
Виртуальный класс alfaview®
BildungszentrumЗанятия проводятся с использованием современной видеотехнологии alfaview® - не выходя из дома или в нашем офисе по адресу . Весь курс может видеть друг друга лицом к лицу через alfaview®, общаться друг с другом с помощью синхронизированного по губам голоса и работать над совместными проектами. Разумеется, вы также можете в любое время видеть и разговаривать со своими преподавателями в прямом эфире, и на протяжении всего курса вас будут обучать преподаватели в режиме реального времени. Уроки - это не электронное обучение, а настоящее живое очное преподавание с помощью видеотехнологий.
alfatraining Agentur für Arbeit Учебные курсы субсидируются и сертифицируются в соответствии с положением об утверждении AZAV. Bildungsgutschein Aktivierungs- und VermittlungsgutscheinПри подаче заявки или заявки на обучение все расходы на курс обычно покрываются финансирующей организацией.
Europäischen Sozialfonds Deutsche Rentenversicherung Финансирование также возможно через программы (ESF), (DRV) или региональные программы финансирования. Berufsförderungsdienst Как постоянный солдат, вы можете посещать курсы повышения квалификации по программе (BFD). Agentur für Arbeit (Qualifizierungschancengesetz) Компании также могут повысить квалификацию своих сотрудников по программе финансирования от .